Generating local amyloidosis in mice by the subcutaneous injection of human insulin amyloid fibrils
نویسندگان
چکیده
Localized deposits of amyloid structures are observed in various pathological conditions. One example of when local amyloidosis occurs is following repeated insulin injections in diabetic patients. The present study aimed to simulate the same condition in mice. To obtain the amyloid structures, regular insulin was incubated at 57°C for 24 h. The subsequently formed amyloid fibrils were analyzed using the Congo red absorbance test, as well as transmission electron microscopy images, and then injected into mice once per day for 21 consecutive days. Firm waxy masses were developed following this period, which were excised, prepared as thin sections and stained with hematoxylin and eosin, Congo red and Sudan black. Histological examination revealed that these masses contained adipose cells and connective tissue, in which amyloid deposition was visible. Thus, localized amyloidosis was obtained by the subcutaneous injection of insulin fibrils. The present results may be of further use in the development of models of amyloid tumors.
منابع مشابه
مطالعه فرایند فیبریل زایی انسولین رگولارو مهار آن با استفاده از ترکیبات آروماتیک
Background: The flexible structure of proteins is one important factor in the formation of ordered aggregates (amyloid fibril). This is a major problem for therapeutic proteins such as insulin. Study on the induction and inhibition of insulin fibrillation process with specific compounds such as aromatic derivatives may provide useful information about means of stabilization of protein structure...
متن کاملAnti-amyloidogenic and disaggregating effects of Salvia officinalis in vitro: a strategy to reduce the insulin amyloid fibrils due to repeated subcutaneous injections in diabetic patients
Background: Recently, there has been growing efforts to elucidate the molecular mechanism of amyloid formation and investigating effective compounds for inhibiting of amyloid structures. Investigation of the fibrillation process through its induction and inhibition using specific compounds such as aromatic derivatives provide useful information for stabilizing the protein structure. In the pres...
متن کاملMouse Models to Study Systemic Amyloidoses: Is Prion-Like Transmission a Common Pathogenic Mechanism?
The amyloidoses are a group of protein-misfolding disorders characterized by the accumulation of amyloid fibrils formed from a variety of proteins. Currently, twentyeight different kinds of human and animal proteins, in intact or fragmented forms, have been found to be associated with pathological disorders such as Alzheimer’s disease, type II diabetes, prion diseases, dialysis-related amyloido...
متن کاملC-terminal sequence of amyloid-resistant type F apolipoprotein A-II inhibits amyloid fibril formation of apolipoprotein A-II in mice.
In murine senile amyloidosis, misfolded serum apolipoprotein (apo) A-II deposits as amyloid fibrils (AApoAII) in a process associated with aging. Mouse strains carrying type C apoA-II (APOA2C) protein exhibit a high incidence of severe systemic amyloidosis. Previously, we showed that N- and C-terminal sequences of apoA-II protein are critical for polymerization into amyloid fibrils in vitro. He...
متن کاملDepletion of Spleen Macrophages Delays AA Amyloid Development: A Study Performed in the Rapid Mouse Model of AA Amyloidosis
AA amyloidosis is a systemic disease that develops secondary to chronic inflammatory diseases Macrophages are often found in the vicinity of amyloid deposits and considered to play a role in both formation and degradation of amyloid fibrils. In spleen reside at least three types of macrophages, red pulp macrophages (RPM), marginal zone macrophages (MZM), metallophilic marginal zone macrophages ...
متن کامل